NUMERICAL METHOD OF SOLVING HEAT CONDUCTION PROBLEMS
FOR BODIES OF COMPLEX GEOMETRY
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A grid method of solving nonstationary problems of heat conduction for bodies
with curvilinear boundaries is proposed. The method is based on approximat-
ing the heat-transfer equation by a balance equation for a canonical shape
element, constructed on a nonuniform difference grid.

The necessity of introducing nonuniform difference grids arises in numerical simula-
tion of physical fields in bodies of complex geometry with curvilinear boundaries. One of
three approaches is usually applied to obtain in this case equations approximating the cor-
responding differential equations. The first approach is related to constructing finite-
difference equations on nonuniform grids by combining series expansions of the unknown func-
tions for nodal points located in the vicinity of the given nodal point [1]. The second
approach is related to that exposed [2] on the considered region of a uniform difference
grid. Though in this case values of the required function are determined on the nonuniform
grid only at near-boundary and boundary nodal points, nevertheless the algorithm is quite
complex in its specific procedures of calculating functions for different nodal points of
the region. The third approach is related to using the finite element method [3]. Its imple-
mentation algorithm is complicated, and estimating the error in the approximate equations
used in this case involves certain difficulties.

In the following we describe a method of solving heat conduction problems for bodies
of complex geometry, whose implementation algorithm on a computer does not differ substan-
tially from the algorithm of solving heat conduction problems for canonical shape bodies.
The method is based on approximating the transport equation by a balance equation for a ca-
nonical shape element, constructed on a nonuniform difference grid.

Consider an arbitrary region G of finite size in a p-dimensional orthogonal coordinate
system. For the sake of simplicity, the detailed discussion of the method, which we call
the canonical element method, is provided for nonstationary problems of heat conduction for
a two-dimensional (p = 2) singly-connected region in a Cartesian coordinate system (x, y).
Let y' and y" be the minimum and maximum values of the coordinate y for points of the region
G. We construct a family of coordinate lines

Y = Ym-1 -+ A, = L,2..., M, Yg = g', yu=y". (1)
We denote by xn' and xp' the minimum and maximum values of the coordinate x for points of the
body located on the coordinate line y = yy. On the segment xp' < x < zxp", m=20, 1, ...,

M, we introduce the family of nodal points

Xim = Xjetm o BDypes 122 01, o [, Xom = Xy Xim =Xm. (2)

We note that the points (Xjo, ¥o)s (xiM, ¥M)» (Xo,pm»¥m), (Xip, ym) belong to the boun-
dary surface of the body under consideration. The time coordinate T is divided by planes

Ty = Tn_y + ATy, 1= 0,1, ..., AT, >0. (3)
To construct the difference equation, approximating the heat conduction equation on the grid
(1)-(3) we write down the energy balance equation for the canonical shape element (rec-
tangle) of the region G (see Fig. 1) formed by the coordinate planes (yp4: + ¥pm)/2, (ym+ym-1)
2, (%it1om + xim)/2, (Rip + Xi-1,m)/2.
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Fig. 1. Fragment of nonuniform difference grid with
canonical shape element abeg.

The specific thermal fluxes through the surfaces eg and ba at the temporal layer n are
found, with an error of order O(xjp?), by the relations

‘/"-m R 7”H—1 ,m + A t7+1 = bim (4)
2 Atiyim
_ }”z'm ‘I’ 7"i—1,m t?m“ ;‘l—l ,m (5)
Grim = 9 Axim, :

The specific thermal flux through the surface can be calculated in terms of values of the

specific thermal fluxes ax' and qC' along the surface be and along the 0f-axis. We note

that ax" and q;' are the projections of the maximum thermal flux q" on the x- and 0C-axes,

while the projection of q" on the y-axis is the specific thermal flux qy”. Flux qg' is
determined at 64 = 0.5, with an error of order 0(Ayp? + A%4p?), by the difference expression

';h’ = (1— eq) Grim _2'_ Gxim + eq xim+1 ‘5 Gxim—1 , (6)
where 0 < 6, < 0.5. If the angle m/2 — w between the y- and 0f{-axes is relatively small,
without loss of solution accuracy one may put eq = 0. With an error of order (Axjp? + Ayy?),
the flux q¢" is calculated by the relation

qg _ }\'im+1 + A‘im t’ilm+1 - t’LIm (7)
2 V(ym+1 = Ym¥P + (Kima1 — Xim)?

It follows from Fig. 1 that rs = q¢'/sin (/2 — w), us = rs — qz" = q¢'"/sin(7/2 - w) — q4",

L1 —

ay" = us tg(w/2 — w), or

. " . ’ j-(,
Qy::‘——*“—ég“‘————‘”‘thg (—§—~—-m>, (8)
¢os | — — wj
2
where w is the angle between the x- and 0l-axes. Since
cos (_ﬂ_ _ m) _ Ym+1— Ym ’
2 V(ym+1 - ym)2 + (xim+1 - xz‘m)z

tg ( T _@) - ?im+1_xim ’
2 Ym+1— Ym
expression (8) can be written in the form

T 7
Mimis + Rim  Cimpt —tim =0 Ximiy — Xim (9)

Gy =— ;
Y 2 Ymi1— YUm i Ym+1 — Yim

the specific thermal flux qy' through the surface gg is determined similarly to (9) by
the relation
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. Mimt himeg bim—timy = Xim— Ximeq
—— — : 10
qy 2 Ym — Ym-1 9 Ym — Ym-1 ( )

where

ax —(1— eq) xim ‘g Qzim + ﬂq xim—1 "'|2‘ xim—1 )

According to the three-layer explicit difference scheme [4, 5], the energy balance equation
can be written as follows:

tn+l . t“ tn . t,z_l :! , o ” , . "
P i gy Lim im g tim im — qx qx qy qy ( 11 )
P {( + ) AT’H_li A" 0’5 (xim+1 - xim—l) + 0,5 (ym+1 - ym—l) '

Here the parameter 6 2 0. For the case of constant values of A, Ayy = Ay, Axip = Axpy,
AtM = At Eq. (11) acquires the form

(ot =t gt b [ fmct B 2
Av At cp AxZ,
t?m+[ +t"zm—1““217m tf Jm T ﬂl— m Xim + Xim— "—Qxi
€ Atyz +(1 _eq) +1 12AxL 1,m +1 ATZ; m £ (12)

+ e ( t;z+l ,mtp tiz_l mt Ximtr — Xim o t:-l_H m—1 — tzl_l 1 Xim — Xim_1 )
! 2Axm—{—l Ayz 2Axm~1 Ayz
The necessary stability conditions of the difference equation (12) are
2ATA 12 i 1 jsél, (13)
co(l+28)\ Axy, Ay?

%m+1%‘xmb4——2xMzAxm$;1_ (14)
Ay?

Due to the possibility of varying the parameter 6, condition (13) practically imposes no
restrictions on the step of the difference scheme. Condition (14) is satisfied if the sur-
face of the body xr = xr(y) is quite smooth, with 32xp(y)/8y? Axg s 1.

The temperature determination at the boundary nodal points (Xyy, ¥p) and (xyp, ¥y) does
not lead to difficulties. If the heat transfer condition near the point (xyp, yy) is

* L pric—o,
Ov

A

where v is the direction of the normal to the boundary surface, to find the ty,"*? values
at this point one can use, for example, the following difference expression

th! — 17 ,

A m 1,m 41 = 0.

Ak, cOS (X, v)+Bt1’" +C=0

The calculation algorithm of the temperature field in a three-dimensional body of complex
geometry by the canonical element method does not differ substantially from the algorithm
of the two-dimensional problem. The construction of the difference grid in a three-dimen-
sional body is advisably performed as follows. We construct a family of equivalent planes
2, —z;

zi=2z;4+ jAz, j=0, 1, 2, .., J, Az:——J—,

where zi;' and z;" are the maximum and minimum values of the coordinate z for points of the

region considered. At each cross section of the body we introduce a family of equidistant

planes: ypj =yj' +miy;, m=20, 1, ..., M, ay; = (y3" - yj')/M, where y;' and y;" are the
minimum and maximum values of the coordinate y for points of the cross section z. Finally,
at each segment of the line (zj, ymj) belonging to the body under consideration one intro-

duces a family of nodal points

” ’,
xm] ani

xmj:xm+dAmﬁi=O,LuW1,A%ﬁ= 7 )
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where ij' and Xp;' are the minimum and maximum values of the coordinate x for points of this
segment.

The difference transport equation for the three-dimensional problem is constructed on
the basis of the energy balance for an elementary rectangular parallelepiped, forming the
coordinate planes: (zj4; + 23)/2, (z4 + z3-1)/2, (Ym+1,j + ymj)/2, (ym,j + ym-1,3)/2,
(Rit1omj + Ximj)/2s (Xipj + Xi-1, mj)/2.

The specific fluxes gy and gy through the surfaces (Xi+1,mj + Ximj)/z and (yp41, j +

ymj)/Z are found from expressions similar to (4) and (9):

L P R SR 1 n
C]; _ szl,m-’ - Aimi ti—i—l,rn/‘ — iimj’
2 Ax s
. Mmar i+ imd Ayt —» Kima1,i — Xim
¥ 2 AYm, “ Ay, ’

77:“/ =(1—8,) q:timj '21* q;’cimj +e, q;u'm+1 Vi 42- q;£m+1,i .

The thermal flux q," through the boundary (Zj+1 + Zj)/2 is found in two steps. At the first
step one finds the projection qzy" of the maximum thermal flux in the plane passing through
the line (zj, ypj) and the point (X4 mrt1,3,¥mt1,3,23) on to z0y-plane:

A o . 77 12
v higisr At Py bimit1 — Limj

Goy = Kimi+1 = Ximi

—q
2 VAZ T (s ptr — Yl VAR T (Yimir— Gom)

’

- q.’. .Lq”.m. q,. . I_T'__q”. i1
oy = (1 _@q\’ vimj 12 ximj o+ eq ximj+ ximj .

At the second step one finds the projection of the maximum flux in the z0y-plane on to the
z-axis:

v V Az 4 (Yimt1— Yim)? - Ymt1i— Ymi
92 =9 Az i Az =
_ Mimier + Aimi Limits — Limi _ = X T Xmi | = Yma1, 0 Ymi
2 Az ¥ Az Tyz Az ’

The specific flux gq,' through the boundary (Zj + Zj_l)/Z is found similarly:

g, = — }\’imj + A‘imj—l tz’mJ' — bimi-1 o q’ Ximi — Ximi-1 = Ymi— Ym-1,7
) 2 Az ¥ Az Ty Az
The energy balance equation for the elementary volume considered is
141 7 1 —1 ’ ” ’ P , ”
e {(] +0) f?fi} ~— Lim; 9 Limi — timi _ 929 Gy—4y | GG
L AT+ AT? Atmi " Ayn Az

By replacing the left hand sides of Eqs. (11) and (13) by the expression cp(timjn -

t%;)/Ar we reach implicit heat transfer equations for canonical shape elements on a non-

uniform grid. These equations are absolutely stable, but the solution algorithm is substan-
tially more complicated for this replacement.

The solution method described was tested numerically by solving a number of heat con-
duction problems for bodies with curvilinear boundaries, in particular for an infinite cylin-
der of radius R with heat exchange boundary conditions of the first and third kind in a
Cartesian coordiante system. The solution is taken on 1/4 of a circle .on the difference

grid: yp =mAy, m =0, 1, ..., M, Ay = R/M; xpj = ilxy, 1 =0, 1, ..., I, Axy = x"/1,
2" = R/1 — (y/R)?; 13 = nAt, n =0, 1, ..., At = const. The extent of nonuniformity of

the grid selected is quite substantial, since the step Ax, varies from 0 at y = R to R/I at

y = 0. The initial temperature of the cylinder is t, = const. Table 1 provides results
t—1t

of comparing the relative temperature ﬂIX,y)=>?———;, determined on the basis of numerical
" 'p
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TABLE 1. Comparison of Numerical [8(x, y)] and

Analytic [8,5(x, y)] Solutions of Heat Conduction
Problem in an Infinite Cylinder with First Kind

Boundary Conditions

Fo 3(0, 0) \‘)a(O, 0) 3(0, R/2) H(R/2, 0) 83(0, R/2y
0,01 1,0 1,0 0,998 0,698 0,999
0,02 1,0 1,0 0,982 0,980 0,980
0,03 0,994 0,9995 0,948 0,945 0,940
0,04 0,9964 0,9963 0,903 0,900 0,884
0,05 0,9887 0,9871 0,857 0,852 0,837
0,06 0,9750 0,9705 0,804 0,808 0,784
0,07 0,9550 0,9470 0,755 0,763 0,730
0,08 0,9293 0,9177 0,709 0,720 0,683
0,09 0,8991 0,8844 0,666 0,679 0,643
0,1 0,8652 0,8484 0,626 0,641 0,618
0,2 0,5182 0,5015 0,342 0,356 0,339
0,3 0,2913 0,2825 0,190 0,194 0,188
0,4 0,1621 0,1585 0,105 0,108 0,103
0,5 0,0904 0,0887 0,058 0,061 0,066
0,6 0,05602 0,0499 0,033 0,034 0,032
0.7 0,0280 0,0280 0,018 0,019 0,018
0,8 0,0156 0,0157 0,010 0,011 0,0010
0,9 0,0087 0,0088 0,0057 0,0059 0,0055
1,0 0,0048 0,0049 0,0032 0,0033 0,0031

TABLE 2. Comparison of Numerical [8(x, y)] and

Analytic [95(x, y)] Solutions of Heat Conduction
Problem in an Infinite Cylinder with Third Kind

Boundary Conditions for Bi = 0.1

Fo (0, 0) 4440, 0) $(0, R) 3{(R, 0) 83(0, R}
0,05 0,999 1,00 0,968 0,9696 0,975
0,1 0,997 0,998 0,956 0,9584 0,960
0,5 0,928 0,929 0,879 0,884 0,881
1,0 0,839 0,841 0,79 0,800 0,804
2,0 0,692 0,694 0,649 0,654 0,660
3,0 0,561 0,565 0,530 0,534 0,539
4,0 0,4579 0,463 0,434 0,437 0,441
5,0 0,3739 0,380 0,355 0,357 0.3647
6,0 0,306 0,317 0,292 0,293 0,300
7.0 0,251 0,259 0,237 0,23 0,249
8,0 0,205 0,208 0,195 0,196 0,207
9,0 0,172 0,178 0,159 0,160 0,164

10 0,137 0,141 0,132 0,133 0,136

15 0,051 0,053 0,049 0,050 0.,0523

20 0,019 0,020 0,017 0,017 0,018

and analytic [6] solutions, at the cylinder axis (x = 0, y = 0) and at the points (x = 0,
y = R/2) and (x=R/2, y = 0) for various values of the Fourier number Fo = At/cpR? for heat
exchange conditions of the first kind and constant temperature tbh at the external boundary.

Table 2 provides results of numerical and analytic [6] determinations of the relative
t—t,
temperature $8(x, y) = ¢ on the cylinder axis and at the points (x = 0, y = R) and
s~ 0

(x =R, y = 0) for various values of the Fourier number for heat exchange conditions of the
third kind with Biot number Bi = oR/A = 0.1 and constant temperature of the surrounding
medium tg. As seen from the table, the data of the numerical solution on a nonuniform grid
with I = M =10 agree quite well with the analytic solutions.

The results of the numerical experiments indicate the effectiveness of the canonical
element method. Transition from one body geometry to another requires changes of a few com-
mands only in the corresponding computer program, related to the functional description of
the boundary surface. This fact is favorable for creating, on the basis of the method
described, universal program packages for simulating heat-transfer processes in complicated
elements of contemporary technology.
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SOLUTION OF THE EXTERIOR AND INTERIOR DIRICHLET PROBLEM
OF POTENTIAL THEORY IN A MULTIPLY CONNECTED DOMAIN

V. M. Khvisevich UDC 536.24:539.313

Through use of a complement to the solution of a heat conduction boundary val-
ue problem of Dirichlet type (presented classically in the form of a double
layer potential) we obtain by means of simple sources singular integral equa-
tions (SIE) for exterior and interior multiply connected domains. Algorithms
and a computer program were developed to obtain a numerical solution of the
SIE.

In considering thermal problems of Dirichlet type by method of the potential (tempera-
ture T is a harmonic function and is subject to the equation of Laplace) two traditional
methods are employed: classical (nondirect) and nonclassical (direct).

The classical method consists in seeking a solution in the form of a double layer
potential:

T =$uly) 2%y, (1)
3 r2

Its limiting value at points of boundary S of domain V is equated to the given function and
we obtain the following integral equation:

T (xg) = 2m% (xg) M - V. P. ’fx(J) OS(P dS,. (2)

Here T(xg) is a given value of the function on boundary S of domain V; k is the density of
the double layer potential; ¢ is the angle between vector r = Iy - x[ and the exterior normal
ny, to S at the integration point y; n = 1 for the inner limit; n = 0 for the direct value;
and n = —1 for the outer limit; v. p. indicates principal value of the Cauchy-type integral.

This method is used, however, only in the case of an interior simply connected domain
[1]. For an exterior domain (even a simply connected one) it is not a suitable method. Ac-
tually the double layer potential can only represent the temperature of the exterior domain
partially. If the temperature is split up into two components, a constant component and a
variable component, T = T(m) + T(V), where T(m) is the mean value, the influence of the mean
temperature T(m) is then not taken into account by the double layer potential. In addition,
for a simply connected exterior domain even a variable temperature field cannot be represented

by a double layer potential if the sources are distributed uniformly over the boundary surface
(x(y) = const):

_x¢dm $ L 4 = nog=0 €))
r2
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