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A grid method of solving nonstationary problems of heat conduction for bodies 
with curvilinear boundaries is proposed. The method is based on approximat- 
ing the heat-transfer equation by a balance equation for a canonical shape 
element, constructed on a nonuniform difference grid. 

The necessity of introducing nonuniform difference grids arises in numerical simula- 
tion of physical fields in bodies of complex geometry with curvilinear boundaries. One of 
three approaches is usually applied to obtain in this case equations approximating the cor- 
responding differential equations. The first approach is related to constructing finite- 
difference equations on nonuniform grids by combining series expansions of the unknown func- 
tions for nodal points located in the vicinity of the given nodal point [i]. The second 
approach is related to that exposed [2] on the considered region of a uniform difference 
grid. Though in this case values of the required function are determined on the nonuniform 
grid only at near-boundary and boundary nodal points, nevertheless the algorithm is quite 
complex in its specific procedures of calculating functions for different nodal points of 
the region. The third approach is related to using the finite element method [3]. Its imple- 
mentation algorithm is complicated, and estimating the error in the approximate equations 
used in this case involves certain difficulties. 

In the following we describe a method of solving heat conduction problems for bodies 
of complex geometry, whose implementation algorithm on a computer does not differ substan- 
tially from the algorithm of solving heat conduction problems for canonical shape bodies. 
The method is based on approximating the transport equation by a balance equation for a ca- 
nonical shape element, constructed on a nonuniform difference grid. 

Consider an arbitrary region G of finite size in a p-dimensional orthogonal coordinate 
system. For the sake of simplicity, the detailed discussion of the method, which we call 
the canonical element method, is provided for nonstationary problems of heat conduction for 
a two-dimensional (p = 2) singly-connected region in a Cartesian coordinate system (x, y). 
Let y' and y" be the minimum and maximum values of the coordinate y for points of the region 
G. We construct a family of coordinate lines 

y~ = Y~-I + AJ~, m-= t,2...,M, yo-~ ~', y ~ = / .  ( 1 )  

We denote by x m' and Xm" the minimum and maximum values of the coordinate x for points of the 

body located on the coordinate line Y = Ym. On the segment x m' < x < Xm", m = 0, i, .... 
M, we introduce the family of nodal points 

x~o~ ~-x,_~, ,~+ k x i . .  i - -0 ,1  . . . . .  l ,  x o , ~  = x2,, x~,,~ = x ~ .  ( 2 )  

We note that the points (xi0, Y0), (xiM, YM), (X0,m, Ym), (Xlm, ym) belong to the boun- 
dary surface of the body under consideration. The time coordinate T is divided by planes 

Tn = Tn_ 1 @ A~n, I~ = 0 , 1 , . . . ,  A T n > 0 -  (3 )  

To construct the difference equation, approximating the heat conduction equation on the grid 
(1)-(3) we write down the energy balance equation for the canonical shape element (rec- 
tangle) of the region G (see Fig. I) formed by the coordinate planes (Ym+1 + Ym)/2, (Ym +Ym-1) 

2, (xi+1, m + Xim)/2, (Xim + xi-l,m)/2. 
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The specific thermal fluxes through the surfaces eg and ba at the temporal layer n are 
found, with an error of order O(xim2), by the relations 

q]i. ,  = - -  ~ i+ ,  ,= + ~i., ti%~ ,m - -  tTm (4) 
2 A&+~,m ' 

s  t i % - - t h , , m  (5) 
qxim = 2 Ax ,m 

The specific thermal flux through the surface can be calculated in terms of values of the 

specific thermal fluxes qx" and qE" along the surface be and along the OE-axis. We note 

that qx" and qE" are the projections of the maximum thermal flux q" on the x- and OE-axes, 
while the projection of q" on the y-axis is the specific thermal flux qy". Flux qx" is 

determined at Oq = 0.5, with an error of order O(kYm 2 + AXim2), by the difference expression 

qx,,~ + q*~m q*i,~+l + qxim+~ (6) -$". = (1 - % )  2 + ~ 2 ' 

where  0 <_ eq ~ 0 . 5 .  I f  t h e  a n g l e  ~ /2  - ~J be tween t h e  y -  and Or  i s  r e l a t i v e l y  s m a l l ,  
without loss of solution accuracy one may put Oq = O. With an error of order (kXim 2 + kym2), 
the flux qE" is calculated by the relation 

q~ 2~im+~ + Z, lm ti'%+l - -  ti~ (7) 
2 Viy,,~+~ - -  y , ~  + (xi,~+~ - -  X~mF" 

It follows from Fig. 

qy" = us tg(~/2 - m), or 

q ~ =  ~ - - q .  tg - - - - ~ o  , 

~os( 2 ~) 2 

where  ~ i s  t h e  a n g l e  b e t w e e n  t h e  x - a n d  O g - a x e s .  S i n c e  

(ar,  ) 9 m + l - - ~ l  m 
COS �9 ~ CO = 

e x p r e s s i o n  (8 )  can  be w r i t t e n  i n  t h e  fo rm 

q~ = ~ = + I  + i~,m ti~"+~ - -  trim --" Xlm+~ - -  X~m . 

2 Y m + l - - Y m  qx Y m + l - - Y l m  ' 

the specific thermal flux qy' through the surface ag is determined similarly 
the relation 

1 that rs = qr (~/2 - m), us = rs - qx" = qr - ~) - qx", 

(8) 

(9) 

to (9) by 
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where 

n 
q ~ = -  X~m+X~_~ t~., t~_~ ?; x ~ - x ~ _ ,  ( lo)  

2 Y m - - Y m - 1  Y m - - Y m - 1  ' 

�9 ,, , st 

-qx = (1 - -Oq)  qxim @2 qxim -~-Oq qxim--l @2 qxim--1 

According to the three-layer explicit difference scheme [4, 5], the energy balance equation 
can be written as follows: 

t-~+' - -  t;7~ t ~ ' ~ -  t " -a  ] 
cp (1 + O) ""~ 0 i.~ j _  q ; - - q ;  q v - - q ~  

A~+~j A'~ ~ 0,5 (x~+-]--- x.~_0 + 0,5 (Ym+~ - -  V.,-~) " 

Here the parameter @ -> 0. For the case of constant values of X, Ay m = Ay, AXim = AXm, 

5T n = Az Eq. (II) acquires the form 

(1 -1- O) A'~ 
~+' t ~. tT~-- tT~' ~" [ _ t ~ 2 "~ - -  h + l , ~ +  ~ - i , , ~ - -  t~,,: + 

Ay z -[- (1 - -  0q) tin+l .m - -  tin--i ,,n Xim+a @ Xim-1 - -  2Xim 
2Ax Ay 2 + 

- -  J j  " 
Ay z 2Axm_~ AF 2 

t~m+: ' t  ~ 2 "n "j- i m - - l - -  tim 

+ 0~ ti~:1 ,,n+, - -  t'~L1 ,,~+, 

2Ax,~+I 

(11) 

(12) 

The necessary stability conditions of the difference equation (12) are 

cp (1 -1- 20) . -[- . ~.~ i, ( 1 3 )  

xi~+l + x,~_l - -  2 x ~  Ax,~ ~.~ 1. ( 1 4 )  
Ay z 

Due to the possibility of varying the parameter @, condition (13) practically imposes no 
restrictions on the step of the difference scheme. Condition (14) is satisfied if the sur- 
face of the body x F = xF(y) is quite smooth, with 82 2 xF(Y)/Sy Ax m <_ i. 

The temperature determination at the boundary nodal points (X0m , Ym) and (Xim, Ym) does 

not lead to difficulties. If the heat transfer condition near the point (XIm , Ym) is 

at 
A + B t + C = O ,  

Ov 

w h e r e  v i s  t h e  d i r e c t i o n  o f  t h e  n o r m a l  t o  t h e  b o u n d a r y  s u r f a c e ,  t o  f i n d  t h e  t i m  n + z  v a l u e s  
a t  t h i s  p o i n t  o n e  c a n  u s e ,  f o r  e x a m p l e ,  t h e  f o l l o w i n g  d i f f e r e n c e  e x p r e s s i o n  

tn+ 1 n+ 1 
A Im - -  tl--1 ,m l::~.~n+l 

Ax~ cos (x v) ~- ,-.1~ + C = O. 

The calculation algorithm of the temperature field in a three-dimensional body of complex 
geometry by the canonical element method does not differ substantially from the algorithm 
of the two-dimensional problem. The construction of the difference grid in a three-dimen- 
sional body is advisably performed as follows. We construct a family of equivalent planes 

z j = z } +  fAz, ] = 0 ,  1, 2, o r , A z =  z ~ - - z }  

where zj' and zj" are the maximum and minimum values of the coordinate z for points of the 
region ~onsidergd. At eac h cross section of the body we introduce a family of equidistant 

planes: Ymj = Yj' + mAyj, m = 0, 1 .... , M, Ayj = (yj" - yj')/M, where yj' and yj" are the 

minimum and maximum values of the coordinate y for points of the cross section z. Finally, 
at each segment of the line (zj, Ymj) belonging to the body under consideration one intro- 
duces a family of nodal points 

xi~.~ : x,'ni + iAx,~s, i = O, 1, ..., I, Axmj x]~i - -  x~i 
I ' 
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where Xmj' and Xmj" are the minimum and maximum values of the coordinate x for points of this 

segment. 

The difference transport equation for the three-dimensional problem is constructed on 
the basis of the energy balance for an elementary rectangular parallelepiped, forming the 

coordinate planes: (zi+ I + zj)/2, (zj + zj_l)/2, (Ym+l,j + Ymj)/2, (Ym,j + Ym-l,j)/2, 

(xi+x,mj + Ximj)/2, (Xim j + xi-l, mj)/2. 

The specific fluxes qx" and qy" through the surfaces (xi+~,mj + Ximj)/2 and (Ym+l, J + 

Ymj)/2 are found from expressions similar to (4) and (9): 

., ~i+~,.~ + ~: t~%~, ,~ / - - t~  
q~ 

2 Axr~: ' 

't'i~+1 : + ~irnJ t n : n " , im  , I f - -  timi -- " X i r a + l ,  j - -  X i m J  

qv = -- 2 Aym -- q~v Ag,~ ' 

The thermal flux qz" through the boundary (zj+l + zj)/2 is found in two steps. At the first 

step one finds the projection qzy" of the maximum thermal flux in the plane passing through 

the line (zj, Ymj) and the point (Xi,m+l,j,Ym+l,j,zj) on to z0y-plane- 

q~Y - 2 -VAz~ + (Y~,,~+I - -  Yi~) 2 . ] /  Az~ + (y,~+~ - -  y~,~)2  ' 

�9 ,p �9 # 

At the second step one finds the projection of the maximum flux in the z0y-plane on to the 
z- axis : 

,, ,, l /  Az2 + (V~,~+~ - -  g~m)2 - Ym+~,: - -  Y,,~: 

q~ = q~v Az qv~ hz  -- 

__ ~ i r a J + l  -~- ~ ' imJ  t i m J + i  - -  t l m J  - -  q ' ~ x z  X ~ m J + l  - -  X l m J  ' - -  Y m + a , J  - -  Y, ,nJ 

- -  - -  2 A z  " Az qv~ Az 

The s p e c i f i c  f l u x  q z '  t h r o u g h  t h e  b o u n d a r y  ( z j  + z j - 1 ) / 2  i s  found  s i m i l a r l y :  

2 Az q~ Az Az 

The energy balance equation for the elementary volume considered is 

A~'*+I At" = Ax.~; + Ay~ " + A-----z--" 

By r e p l a c i n g  t h e  l e f t  hand s i d e s  o f  Eqs.  (11)  and (13)  by t h e  e x p r e s s i o n  c g ( t i m j  n - 

t '/i~1)/A, we r e a c h  i m p l i c i t  h e a t  t r a n s f e r  e q u a t i o n s  f o r  c a n o n i c a l  s h a p e  e l e m e n t s  on a n o n -  

uniform grid. These equations are absolutely stable, but the solution algorithm is substan- 
tially more complicated for this replacement. 

The solution method described was tested numerically by solving a number of heat con- 
duction problems for bodies with curvilinear boundaries, in particular for an infinite cylin- 
der of radius R with heat exchange boundary conditions of the first and third kind in a 
Cartesian coordiante system. The solution is taken on 1/4 of a circle on the difference 

grid: Ym = mAy, m = O, I, .... M, Ay = R/M; Xmi = iAxm, i = 0, i, ..., I, Ax m = x"/I, 

XM" = Rv/l - (Ym/R)2; Xn = nAx, n = 0, i, ..., A~ = const. The extent of nonuniformity of 

the grid selected is quite substantial, since the step Ax m varies from 0 at y = R to R/I at 
y = 0. The initial temperature of the cylinder is t o = const. Table 1 provides results 

t - -  t b 
of comparing the relative temperature ~(x, y)--to__tb, determined on the basis of numerical 
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TABLE 1. Comparison of Numerical [%(x, y)] and 
Analytic [%a(X, y)] Solutions of Heat Conduction 
Problem in an Infinite Cylinder with First Kind 
Boundary Conditions 

Fo 0(0, O) ~a(O, O) %(0, R/2) ~'(R/2, O) aa(O, R/2) 

0,01 
0,02 
0,03 
0,04 
0,05 
0,06 
0,07 
0,08 
0,09 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1,0 

1,0 
1,0 
O, 994 
0,9964 
O, 9887 
O, 9750 
O, 9550 
0,9293 
0,8991 
O, 8652 
0,5182 
0,2913 
O, 1621 
0,0904 
0,0502 
0,0280 
0,0156 
0,0087 
0,0048 

1,0 
1,0 
0,9995 
0,9963 
0,9871 
0,9705 
0,9470 
0,9177 
0,8844 
0,8484 
0,5015 
0,2825 
0,1585 
0,0887 
0,0499 
0,0280 
0,0157 
0,0088 
0,0049 

O, 998 
O, 982 
O, 948 
0,903 
0,857 
0,804 
0,755 
0,709 
O, 666 
O, 626 
0,342 
O, 190 
O, I05 
0,058 
O, 033 
0,018 
0,010 
0,0057 
O, 0032 

O, 998 
O, 980 
O, 945 
0,900 
0,852 
0,808 
O, 763 
O, 720 
0,679 
0,641 
O, 356 
0,194 
0,108 
0,061 
0,034 
0,019 
0,011 
0,0059 
0,0033 

O, 999 
O, 980 
0,940 
0,884 
0,837 
0,784 
O, 730 
O, 683 
0,643 
0,618 
0,339 
O, 188 
O, 103 
O, 066 
0,032 
0,018 
0,0010 
0,0055 
0,0031 

TABLE 2. Comparlson of Numerical [%(x, y)] and 
Analytic [%a(X, y)] Solutions of Heat Conduction 
Problem in an Infinite Cylinder with Third Kind 
Boundary Conditions for Bi = 0.i 

Fo 0(0, O) ~a(O, O) $(0, R) O(R, O) aa(O, R) 

0,05 
0,1 
0,5 
1,0 
2,0 
3,0 
4,0 
5,0 
6,0 
7,0 
8,0 
9,0 

10 
15 
20 

O, 999 
O, 997 
O, 928 
O, 839 
O, 692 
0,561 

1,00 
O, 998 
O, 929 
0,841 
O, 694 
0,565 

O, 968 
0,956 
O, 879 
0,795 
O, 649 
O, 530 

O, 9696 
O, 9584 
O, 884 
0,800 
O, 654 
O, 534 

0,4579 
0,3739 
O, 306 
0,251 
0,205 
O, 172 
O, 137 
0,051 
0,0t9 

0,463 
0,380 
0,317 
O, 259 
0,208 
O, 178 
0,141 
0,053 
0,020 

O, 434 
O, 355 
O, 292 
0,237 
0,195 
O, 159 
O, 132 
0,049 
0,017 

0,437 
O, 357 
O, 293 
O, 23 e 
O, 196 
O, 160 
O, 133 
0,050 
0,017 

O, 975 
O, 960 
0,881 
0,804 
O, 660 
0,539 
0,441 
0,3647 
O, 300 
0,249 
0,207 
O, 164 
O, 136 
0,0523 
0,018 

and analytic [6] solutions, at the cylinder axis (x = 0, y = 0) and at the points (x = 0, 
y = R/2) and (x = R/2, y = 0) for various values of the Fourier number Fo = %~/cpR 2 for heat 
exchange conditions of the first kind and constant temperature tb at the external boundary. 

Table 2 provides results of numerical and analytic [6] determinations of the relative 

temperature O(x, y) = ts_t ~ on the cylinder axis and at the points (x = 0, y = R) and 

(x = R, y = 0) for various values of the Fourier number for heat exchange conditions of the 
third kind with Blot number Bi = =R/k = 0.I and constant temperature of the surrounding 
medium t s. As seen from the table, the data of the numerical solution on a nonuniform grid 
with I = M = i0 agree quite well with the analytic solutions. 

The results of the numerical experiments indicate the effectiveness of the canonical 
element method. Transition from one body geometry to another requires changes of a few com- 
mands only in the corresponding computer program, related to the functional description of 
the boundary surface. This fact is favorable for creating, on the basis of the method 
described, universal program packages for simulating heat-transfer processes in complicated 
elements of contemporary technology. 
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SOLUTION OF THE EXTERIOR AND INTERIOR DIRICHLET PROBLEM 

OF POTENTIAL THEORY IN A MULTIPLY CONNECTED DOMAIN 

V. M. Khvisevich UDC 536.24:539.313 

Through use of a complement to the solution of a heat conduction boundary val- 
ue problem of Dirichlet type (presented classically in the form of a double 
layer potential) we obtain by means of simple sources singular integral equa- 
tions (SIE) for exterior and interior multiply connected domains. Algorithms 
and a computer program were developed to obtain a numerical solution of the 
SIE. 

In considering thermal problems of Dirichlet type by method of the potential (tempera- 
ture T is a harmonic function and is subject to the equation of Laplace) two traditional 
methods are employed: classical (nondirect) and nonclassical (direct). 

The classical method consists in seeking a solution in the form of a double layer 
potential: 

-- ~• c~ (i) T 
S Y - ' - - ~  Y" 

Its limiting value at points of boundary S of domain V is equated to the given function and 
we obtain the following integral equation: 

T (xs) = 2~• (Xs) ~ + v. p. ~ z(y) cos~ dSy. (2 )  
r 2 

Here  T(x  S) i s  a g i v e n  v a l u e  o f  t h e  f u n c t i o n  on b o u n d a r y  S o f  domain  V; K i s  t h e  d e n s i t y  o f  
t h e  d o u b l e  l a y e r  p o t e n t i a l ;  ~ i s  t h e  a n g l e  b e t w e e n  v e c t o r  r = lY - x[ and t h e  e x t e r i o r  n o r m a l  
ny to S at the integration point y; ~, = 1 for the inner limit; ~ = 0 for the direct value; 
and N = -i for the outer limit; v. p. indicates principal value of the Cauchy-type integral. 

This method is used, however, only in the case of an interior simply connected domain 
[I]. For an exterior domain (even a simply connected one) it is not a suitable method. Ac- 
tually the double layer potential can only represent the temperature of the exterior domain 
partially. If the temperature is split up into two components, a constant component and a 

variable component, T = T(m) + T(V), where T(m) is the mean value, the influence of the mean 

temperature T(m) is then not taken into account by the double layer potential. In addition, 
for a simply connected exterior domain even a variable temperature field cannot be represented 
by a double layer potential if the sources are distributed uniformly over the boundary surface 
(K(y) = const): 

X doa s ~ ~ .~ COSqa ~ XO)S T .~ dS  0 ( 3 ) 
s ~ r z 
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